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To reduce the computation time in nuclear coupled-channels calculations including
Coulomb excitation, the applicability of Gordon’s numerical method has been in-
vestigated to the integration range beyond the range of the nuclear potential. It turns
out that a considerable reduction of computation time can be obtained. The larger
the integration range and the relative wave number, pertinent to a given reaction process
and reaction energy, the larger is this reduction. This is illustrated by two test cases
dealing with « and '®QO scattering near the Coulomb barrier. Consequently, although
the method is sometimes also of considerable advantage in the case of scattering of
light particles, it seems to be especially suitable to heavy ion scattering problems.

1. INTRODUCTION

The inclusion of the contribution of Coulomb excitation in coupled-channels
calculations of nuclear scattering problems often increases the computation time
considerably. To reduce this time we have investigated the applicability of
a method for solving systems of coupled linear second-order differential equations,
introduced by R. G. Gordon in connection with atomic and molecular scattering
and bound state problems [1, 2]. For most collisions between atoms and ions at
thermal energies, the de Broglie wavelength associated with the relative motion
is short as compared to the long range of the interatomic potential. This range can
then be divided into intervals which are sufficiently small to approximate the
potential matrix by a linearly varying reference potential matrix and which on
the other hand contain a sufficient number of de Broglie wavelengths. This
enables one to write the general solution vector in e.g., the classically allowed
region as a linear combination of two rapidly oscillating Airy functions with slowly
varying coefficient vectors. An important advantage of Gordon’s method is
connected with the fact that part of the numerical procedure is independent of
energy. Apart from a possible decrease of computation time at a single scattering
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energy [3], an additional amount of time is thus saved when the calculation is
repeated at a slightly different energy.

In Section 2, we give a concise formulation of Gordon’s method. In Section 3,
the application of Gordon’s method to nuclear scattering problems is discussed.
To study this applicability, the method has been implemented in Tamura’s code
JUPITOR. In the resulting code JUPIGOR, the integration range is divided into
a part up to the radius where the nuclear interaction has died out and a large
part where only the Coulomb interaction operates. From preliminary calcula-
tions it appeared that Gordon’s method is not efficient over the first part: the step
size has to be taken too small. This part is therefore dealt with by a conventional
step-by-step method. Subsequently, the remaining integration range is divided
into steps such that the Coulomb interaction matrix is linearized, up to a few
percent over one step. Here Gordon’s method turns out to be very efficient and
to reduce computation time considerably.

In Section 4, we present the results of our study on the 11.5, 16.5,
21.5 MeV 22Te(a, «')122Te [12] and 39, 44, 49 MeV 8Ni(*%0, 180Q')58Ni [13] inelastic
scattering problems. Preliminary results of our investigation on the 10-16 MeV
MCd(a, o) Cd inelastic scattering problem have been published elsewhere [14].

2. A CoNcISE FORMULATION OF GORDON’S METHOD

The Schrodinger equation for the partial wave radial function in potential
scattering is, in conventional notation,

{ d° ) 2m I+ 1)

e L O R e N ) @.1)

This equation can be rewritten into the form

(d2h]dr®) + (k2 — U(r)} s = O. 2.2)

Consider some interval of the integration range with the midpoint at radius F.
Although in Gordon’s method several forms can be used for the reference potential,
we follow him in choosing a linear one of the form

Uyr) = U(F) + (r — P)NdU/dr)],— , (2.3)

where U is the average value of the potential over the interval. Using (2.3) as
potential in (2.2) gives us the Airy functions Ai and Bi as a set of two linearly
independent solutions. As shown by Gordon these functions can be efficiently
evaluated numerically. The general reference solution may now be written as

ho(r) = Ail(B + 1)l a + Bil«(B + )] b, 24
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with the constants

a:(dU

13 _Um) —k*
dr 7=;) ’ r

T dujdr|,.,

2.5)

The constant coefficients @ and b are determined by conditions of continuity at
the interval boundaries. For instance, if they would be adapted to the value and
derivative of the exact solution #(r) at the “left-hand” boundary r, ,

a = m{Bi'[(B + r)] $(r) — o Bil(B + r)] ¥'(r)}, (2.62)
b = m{ot di[o(B + r)] §'(r)) — Ai'[o(B + r)] Y(ri)}, (2.6b)

where the prime denotes differentiation with respect to the argument.

Including the difference between the true potential and the reference potential
one obtains corrections da(r) and 4b(r) to the coefficients g and b. The solution of
the Schrodinger Eq. (2.2) can now be approximated by the reference solution (2.4)
plus a correction term

P(r) ~ Ailx(B + r)Ka + da(r)} + BilB + r)l{b + 4b(r)}, 27

where the varying coefficients, to first order in [U(r) — Uy(r)] are given by
da(r) = —= [ Bila(B -+ rHUC") — Ur' ) ) dr',  (2.8a)
73

by = = " Ai[o(B + rHUC") — Unlr')} ) dr”. (2.8b)

These coefficients remain small as long as the reference potential is a good approxi-
mation to the true potential. Thus, in the classically allowed region the solution
(2.7) has been written as a linear combination of two rapidly oscillating Airy
functions with slowly varying coefficients. The integrals in (2.8) can be evaluated
analytically.

In the case of n coupled equations the differential operator and &2 in (2.2) stand
for diagonal (n x n) matrices while the potential is in general a nondiagonal (r X #n)
matrix U(r). To obtain a reference potential matrix a similarity transformation is
performed which reduces U(F) to diagonal form

X-U(F) X = diag(d,), (2.9)

where X is the transformation matrix and A, are the eigenvalues. In other words
U(F) has been transformed from a free basis into a Jocal basis such that it is diagonal.
As reference potential matrix the following diagonal matrix is chosen

Uy(r) = [X720F) Xlaing + (v — AIXAU/dr)],-7 Xlasag » 210
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where U(F) is the average value of the potential matrix over the interval and the
subscript “diag” means that only the diagonal elements are retained. With this
diagonal matrix the set of reference equations becomes uncoupled and the Airy
functions are again the linearly independent exact solutions. Writing the Airy
functions in diagonal matrix form, the general reference solution vector in the
local basis is given by

¢, = Aia + Bib. (2.11)

The constant coefficient vectors a and b are once more determined by boundary
conditions like (2.6). The solution vector of the coupled equations may now be
approximated by

¢ ~ Ai(a -+ Aa) -+ Bi(b + Ab), (2.12)

where the varying coefficient vectors are determined by
pa=—n "Bi{U — U, ¢, dr, (2.13a)
T
ab = | " AU — Uy} &, dr'. (2.13b)
Ly’

The continuity condition for the solution vector in the free basis leads to a relation
between the local solution vector in interval p and that in interval p + 1, both taken
at the common boundary point:

Yo = XX, = Ty, . (2.14)
Note that the following quantities are independent of energy:

the diagonalized potential matrix X-1UX,
the transformed derivative potential matrix X-1(dU/dr) X,
the transformation matrix T, .

These quantities can therefore be used at other values of the energy, which turns
out to save more than half of the computation time.

The general solution vector can be written as a linear combination of n inde-
pendent solution vectors. These solution vectors can be collected as the columns
of a solution matrix ¥. The component ¢ of the vector s (solution) is denoted by
s . Suppose that the components in the solution vectors are arranged in order
of decreasing local relative kinetic energy. Integrating through a classically
forbidden region, the components with negative kinetic energy will in general
consist of an exponentially growing and an exponentially decreasing part. The
former is responsible for a tendency to destroying the initially taken linear indepen-
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dence of the solution vectors. To maintain this linear independence, the solution
matrix can be stabilized by an unitary transformation such that the exponentially
growing components below the diagonal with local negative Kinetic energy are
eliminated. In this way a stable solution matrix ¥ is obtained

W — gy, (2.15)

in terms of the original solution matrix ¥. The unitary matrix % can be chosen [4]
as a product of elementary unitary Hermitian matrices: P,P,_, ..P, ..., in which ¢
runs over the components with local negative kinetic energy and with

P,=1-—2w,w," (2.16)
The unit column vector w, with » components can be constructed from row ¢ of ¥:

2w, = (s s sees Yo + SPE/| e 1, 05, 0), 2.17)

where K and S are defined as positive constants, given by the expressions
[4
S2 = Z ‘pcslﬁc*s, 2K* = §* + S[ ‘/’cc I (218)
s=1

It can easily be shown that the solution matrix ¥ obtained has vanishing elements
below the diagonal in the rows ¢ up to and including n, while the corresponding
elements of the derivative of ¥ become small. If on the other hand a different choice
is made for w, by replacing i, by i, in Eq. (2.17), the abovementioned results
for ¥ and ¥’ are interchanged. Clearly, it is possible to eliminate the exponentially
growing solution by means of the linear combination k.., + ¢,,. The wave
number k&, is defined as (| A, |)'/2 in terms of one of the negative eigenvalues A,
in Eq. (2.9).

In Gordon’s method [1] the solution vectors are real. In view of our preference
for the use of complex solution vectors in Section 3, we have given the above-
mentioned formulae in an adapted notation. Furthermore, we note that in Gordon’s
code an approximation to [X-1U(F) X]jag in Eq. (2.10) is used. In Section 3 this
approximation is not made. We use in Eq. (2.9) U(F) instead of U(F).

3. THE APPLICATION OF GORDON’S METHOD TO NUCLEAR SCATTERING PROBLEMS

The Calculational Procedure

The coupled-channels formalism for inelastic scattering in nuclear physics has
been discussed extensively in the literature [5-8]. This formalism leads to a set of
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coupled differential equations for the radial wave functions u;, of the following
form

[ n? ( d? I+ 1)

ZZE
= — 5 61)— 142t
2m \dr r

) + (£ — -+ Vopt] up(r)

= Z V}z;l’z’(") U}’z'(”), (3.1
v

assuming a spinless projectile. Here J, / and / denote the total angular momentum,
the orbital angular momentum and the spin of the target nucleus in the state
with excitation energy ¢;, respectively. The coupling potential is denoted by
Vi > the optical model potential by VoPt, whereas z; and z, are the charge
numbers of the projectile and target nucleus, respectively. The total angular
momentum J, its projection on the z-axis and the parity are good quantum
numbers.

If # is the number of coupled equations (3.1) for a given J, the solution satisfying
the usual boundary conditions [6] can be written as a linear combination of »
independent regular solutions uj"

‘o kz
Z a(v) J() ::0 (21 + 1)1/2 e Z[alliSHiFl + (T

3/2

) CliandG+iF3], (3.2)
where G, and F; are the irregular and regular Coulomb wave functions and o; the
partial-wave Coulomb phase shift. The subscript i refers to the initial channel.
A similar set of equations holds for the derivatives of the respective functions and
together with Eq. (3.2) they supply the matching and normalization conditions.
The calculated matrix elements C{, . are used in the calculation of the elastic
and inelastic scattering amplitudes.

To study the applicability of Gordon’s method, it has been implemented in
Tamura’s code JUPITOR [9]. In the resulting code JUPIGOR, the integration
range is divided into a part up to the radius where the nuclear interaction has died
out, to be called the coupling radius r,, and a large part up to the matching radius
r,. where only the Coulomb interaction operates.

From preliminary calculations for a single channel case with a complex nuclear
potential, it appeared that Gordon’s method is not efficient up to the radius r,, .
The step size has to be taken too small, because the nuclear potential varies too
fast over this range to be efficiently linearized. This part is therefore dealt with by a
conventional method with a step size of 0.1 to 0.2X [10], where A is the de Broglie
wavelength. In JUPITOR the step-by-step Stérmer method is used for this purpose.
Subsequently, we divide the remaining integration range into steps such that the
potential is linearized up to a few per cent over one step. In the next subsection
the procedure followed in choosing the step sizes will be dealt with.
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Choosing Step Sizes

Taking a perturbation potential matrix [U(r) — Uy(r)] which is quadratic in r
on the diagonal and linear in r for the off-diagonal elements, the perturbation
integrals (2.13) can be evaluated analytically. Notwithstanding this, the calculation
of these first-order corrections to the reference solution needs extended matrix
multiplications. As a consequence, the calculation of the solution (2.12) requires
about two or three times as much computational effort as does the calculation of
the reference solution (2.11) alone. In view of this it is useful to avoid the calculation
of the perturbation integrals in cases where this is possible.

In Gordon’s method the step size is taken such that the perturbation integrals are
small enough to keep the accuracy of the reference solution at some required level.
For some potential and total angular momentum this requires the calculation of
these integrals once; for subsequent calculations at different energies, with the
same potential and total angular momentum, the reference solution can then be
calculated efficiently using the same intervals and applying the energy independent
matrices following Eq. (2.14) of Section 2.

In our application of Gordon’s method we prefer to prescribe the step size
without the calculation of the perturbation integrals. Over the integration range
rop << r << r, the potential of each uncoupled equation of set (3.1) has a radial
dependence of the form 2nkr—* + /(I + 1) r~2, where 7 is the Coulomb parameter.
Preparatory calculations have shown that in the case of an uncoupled equation a
sufficient accuracy of the final results can be obtained by choosing the step sizes

{
fl T e

FIG.I]. The step sizes over the integration range from r,, to r, are chosen by linearizing the
potential up to a few percent over one step.
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such that over one step the maximal deviation of the actual potential with respect
to the linearized potential equals a few percent of the difference between the actual
potential and the average potential (see Fig. 1). In the case of coupled equations it
is evident that coinciding intervals have to be chosen in all channels of the same
coupled J set. The step size is determined according to the abovementioned method,
applied to a similar potential form 29kr-1 + I(/ + 1) r~2, in which now an average
value of / over the coupled channels has been taken into account. For the test
cases to be dealt with in Section 4 the first steps have a size of about 1 fm, the last
few about 8 fm, depending on the value of r,, .

The radial region around the classical turning points of the individual equations
deserves special attention, because the coupling between the equations is most
effective here. This complication occurs for such high J values that some or all of
the turning points are beyond r,, . In the region of turning points more rigorous
linearizing conditions are imposed.

In this way we can work with the reference solution avoiding the calculation of
the perturbation integrals (2.13). For subsequent calculations with the same total
angular momentum and Coulomb interaction but with a different energy and/or
nuclear interaction the reference solution can be evaluated using the same step
sizes and applying again the energy independent matrices following Eq. (2.14).

4. RESULTS AND DISCUSSION

In this section the results of two test cases will be presented. In both cases
the multiple excitation of a “vibrational” nucleus with one-phonon and two-
phonon triplet states is considered. The excitation is induced by inelastic scattering
of alpha and !0 particles, respectively, near the Coulomb barrier. The code
JUPIGOR allows independent variation of each of the optical potential deformation
parameters B, involved in the coupling of the levels considered. In addition, the
corresponding reduced electric multipole matrix elements can be introduced inde-
pendently. In view of the purpose of this paper, however, we prefered to consider
the following simple choice. The coupling potential has been expanded up to and
including the first order in the deformation. A purely harmonic vibrational model
is assumed. As a consequence, the deformation parameters Bz , By, Bee and By,
defined by Tamura [11], have been taken equal, whereas By, = Bgs = Boa = 0.
The common B value is given below. Some of the calculated C-matrix elements
for alpha and %O scattering have been collected in Tables 1 and II, respectively.
In Fig. 2 the reduction of computation time for Gordon’s method compared with
Stérmer’s method, is given as a function of the matching radius r,, for a total
angular momentum value J = 5.
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Multiple Excitation of 1%Te by 11.5, 16.5, and 21.5 MeV 4He

In this case, the Coulomb parameter and wave number are about 8.0 and 1.7,
respectively. The optical model parameters are: V = 250 MeV, W = 37.6 MeV,
ry =r, =r, = 1.333fm, a, = a,, = 0.582 fm. The abovementioned deformation
parameters are taken equal to 0.15.

Calculations were carried out for several total angular momentum J values.
However, we have concentrated our attention in this article on J = 5 and 30,
because the results for these two J values turn out to be representative for the
general properties of low and high J values. Furthermore, calculations were
performed for several r,, values distributed between 25 and 200 fm. It appears that
in most practical calculations for this reaction with energies near the Coulomb
barrier, the contribution of Coulomb excitation to the C-matrix elements can
only be neglected if r,, is chosen equal to about 100 fm or larger. In the following
we shall confine ourselves to such r,, values. In addition, to study the extent of
linear independence of the solution vectors, calculations were also carried out in
the J = 30 case for different r,, values.

In Table 1 the C-matrix elements are presented for / = 5 and 30 at laboratory
energies of 16.5 and 21.5 MeV. The rows containing the C-matrix elements
calculated with our code JUPIGOR are denoted by G, those with Tamura’s code
JUPITOR by T. The results have been obtained with r,, and r,, values of 15 and
100 fm, respectively.

First, we discuss the J =5 (I, = 0; I, = 5) results for Ejap = 16.5 MeV
(G—1,T—1,T—2,T—3)and Eyap = 21.5MeV(G — 2, T —4). Row G — |
contains the C-matrix elements, obtained with a step size of 0.10 fm for Stérmer’s
method up to r,, and 33 steps according to Gordon’s method for the remaining
integration up to r,,. The rows T'— 1, 7 — 2, and T — 3 contain the elements
calculated with step sizes of 0.05, 0.10 and 0.20 fm, respectively, for Stérmer’s
method over the whole integration range. Comparing G — 1 with 7 — [, we see
that in most C-matrix elements a 3-figure correspondence is obtained. Variations
of of r,, beyond 100 fm lead to changes in the C-matrix elements G — 1 of a
fraction of 19%. To get an indication of the computational efficiencies we have
compared G — 1 with T — 2, the latter results being almost identical to 7" — 1.
For r,, = 100 fm this gives a reduction of the computation time by a factor of
about 9 (Fig. 2). Row G — 2 contains the C-matrix elements obtained at
at Ejap = 21.5 MeV using the same intervals from r,, to r,, as in G — 1 and
applying the energy independent matrices as expressed in Section 2 (following
Eq. (2.14)), which already have been calculated for G — 1. In this way the compu-
tation time is reduced by a total factor of about 20 (Fig. 2). As evident from
Table I, the correspondence of G — 2 with T — 4 is satisfactory. A similar corre-
spondence is obtained at an energy of 11.5 MeV. These results have not been
presented.



NUCLEAR COUPLED-CHANNELS CALCULATIONS 393

Next, we discuss the J = 30 (I, = 0; /, = 30) results for Eigp = 16.5 MeV
(G—3,T—5T—6,T—"Tand Ejap =21.5MeV(G — 4, T —8).RowG — 3
contains the C-matrix elements obtained with a step size of 0.20 fm for
Stérmer’s part (r,, = 15 fm, r,, = 100 fm). This step size can be taken relatively
large because of the monotonous behaviour of the solution vector up to r.,.
Gordon’s method needs in this case 44 steps. The rows T — 5, T —6and T — 7
contain the elements calculated with step sizes of 0.05, 0.10 and 0.20 fm, respec-
tively. Comparing these results the correspondence can be considered as satisfactory
except for some elements, particularly the elastic channel and the I, = 4,/; = 32,34
elements. Calculations for r,, beyond 100 fm give rise to variations of the G — 3
elements within one per cent, apart from some elements which show variations of
a few percent. The C-matrix elements of the elastic channel and the small elements
for I, = 4, I; = 32,34, which are not expected to contribute significantly to cross
sections, show larger relative variations, but remain of the same order of magnitude.

The abovementioned discrepancy in the C-matrix element of the elastic channel
can be understood by considering that the elastic component of the solution vector
in Eq. (3.2), divided by (2] + 1)1/2 exp(ic,), corresponds at this high J value with
the regular Coulomb wave function F; in about four figures. Consequently, the
relatively small value of the C-matrix element is obtained by subtracting two
quantities, which agree up to about four figures, and is rather sensitive to small
variations in the elastic component of the solution vector. However, we believe
that in most practical calculations this discrepancy has no consequences.

The discrepancy for I; = 4, I, = 32,34 cannot be explained on this basis: the
accuracy of the C-matrix elements of the inelastic channels is more directly related
to the accuracy of the inelastic components of the solution vector. We believe that
the T — 5 and T — 6 values for these C-matrix elements are too large due to a
numerical instability in the Stérmer procedure, originating from a tendency of
the solution vectors to become linearly dependent for high angular momenta.
To confirm this we have carried out addition calculations for different r., values
(r,, = 100 fm).

For r,, values up to about 15 fm, it turns out that in all C-matrix elements a
3 a four-figure correspondence is obtained, whereas for r,, = 20 fm some C-matrix
elements begin to show agreement to within two-figures. The correspondence for
the r,, values larger than 20 fm remains acceptable, except for the I, = 4,
[; = 32,34 elements. We note that for J = 30 the radial region of the classical
turning points of the individual equations lies between r ~ 21 and r ~ 26 fm.
For r,, = 25fm the I; = 4, I, = 32,34 elements still have the same order of
magnitude, but they deviate more and more for #,, values of 30 and 35 fm, lying
in the classically allowed region, especially when a step size of 0.05 fm is taken over
the integration range up to r., . In this case they become of the same order of
magnitude as in the case 7 — 5 of Table L.
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NUCLEAR COUPLED-CHANNELS CALCULATION
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Looking at the solution vectors, it turns out that for r,, values of about 5 fm
and larger the Stérmer procedure generates some solution vectors, which show a
tendency to become linearly dependent. We conclude, however, that by using
Gordon’s stabilization transformation in the classically forbidden region for suffi-
ciently small r,, values, this tendency can be suppressed, which then leads to
reliable values of the C-matrix elements.

The Stérmer procedure used in Tamura’s code does not contain a facility to
maintain linear independence. However, we believe that in principle it is possible
to apply Gordon’s stabilization procedure to the Stérmer method. In this case the
potential matrix needs only to be diagonalized to determine the arrangement of
the components in the solution vectors in order of decreasing relative kinetic
energy. It is not necessary to transform the solution vectors into a local basis.
Presumably, stabilization is only needed in a few points of the classically forbidden
region. We have not realized these ideas in the Stdrmer procedure to stabilize the
solution vectors below r,, . The reason is that in general and also in our test cases,
the linear dependence enters only for high J values. However, note that in our code
JUPIGOR r,, has been chosen such that the nuclear potential can be neglected
outside r,, . In the first instance one may be inclined to conclude from this that it is
less meaningful to take r,, smaller than 15 fm, the value of r,, which has been
taken for the results in the table. For high J values, however, the nuclear potential
no longer contributes significantly to the C-matrix elements. (This is already the
case for J ~ 15.) In these cases a small r,,, value can be recommended to guarantee
the linear independence of the solution vectors, as well as for reasons of compu-
tational efficiency. For practical cross section calculations it is therefore
advantageous to take r,, for the high J values considerably below 15 fm, e.g.,
1 fm, or even smaller. In JUPIGOR this is actually done.

The C-matrix elements in row G — 4 are calculated by using the energy
independent matrices, which already have been determined in G — 3. The corre-
spondence with 7 — 8 is satisfactory, except for the abovementioned discrepancies.
About a similar correspondence is obtained at an energy of 11.5 MeV.

Multiple Excitation of ®8Ni by 39, 44 and 49 MeV 190

This case has a Coulomb parameter and wave number of about 21 and 4.5,
respectively. The optical model parameters are: V' = 22.69 MeV, r, = 1.30 fm,
a, = 0.533fm, W = 2.35MeV, r,, = 1.37 fm, a,, = 0.375fm, and r, = 1.25fm
[13]. The deformation parameters are taken equal to 0.18. The values of r,, and r,,
have again been taken as 15-and 100 fm, respectively. In Table II the C-matrix
elements are presented as before for J = 5 and 30 at laboratory energies of 44 and
49 MeV.

We discuss now the J = 5 (I; = 0, I; == 5) results for Ejap = 44 MeV (G — 1,
T—~1,T—2, T—23)and Eiap = 49 MeV (G — 2, T —4). Comparing G — 1
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with T — 1 we see that in most C-matrix elements a three-figure correspondence
is obtained. However, the comparison with 7"~ 2 gives only small discrepancies
and may be used to determine the reduction of the computation time. For
r = 100 fm this reduction is about a factor of 18 (Fig. 2). The C-matrix elements
of row G — 2 at Ejan = 49 MeV have again been obtained by applying energy
independent matrices. The reduction of the computation time is now a total factor
of about 42 (Fig. 2). The agreement with 7 — 4 is satisfactory. A similar agreement
is evident from the results at an energy of 39 MeV, which have been left out in
Table II.

T T I T T 1
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Fic. 2. Reduction factor of computation time for Gordon’s method compared with Stdrmer’s
method, applied to the integration range from r,, to r,, for a total angular momentum value
J = 5. The solid and dashed curves represent the results of alpha and oxygen particles scattering,
respectively. The dotted curves represent the results obtained by applying energy independent
matrices already calculated for a different energy.

Finally, considering the J = 30 (I; = 0, /; = 30) results for Ejan = 44 MeV
(G—3, T—5 T—6, T—17) and Eww =49MeV (G —4, T — 8) similar
conclusions can be drawn as in the preceding J = 30 case. Note, however, that the
type of discrepancy observed for some C-matrix elements is absent here.

5. CONCLUSION
In describing a nuclear reaction process including Coulomb excitation by means

of a coupled-channels calculation, the analysis often involves the solution of a large
set of coupled linear second-order differential equations. It turns out that a con-
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siderable reduction of computation time can be obtained by applying Gordon’s
numerical method, especially if the calculation is to be carried out for various
energies and/or optical model parameter sets. The larger the integration range and
the relative wave number, pertinent to the reaction process, the larger is this
reduction. Consequently, although the method is also of considerable advantage in
some light particle scattering cases, it seems to be especially suitable to heavy ion
scattering problems. Furthermore, a comparison of the results in this paper with
those recently published by the present author [14], indicates that the reduction
factor increases also with the dimension of the set of coupled equations to be solved.
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